# ETHYLENE CARBONATE/ETHER SOLVENTS FOR ELECTROLYTES IN LITHIUM SECONDARY BATTERIES

### S. TOBISHIMA, M. ARAKAWA, T. HIRAI and J. YAMAKI

NTT Electrical Communication Laboratories, NTT, Tokai, Ibaraki-ken 319-11 (Japan)

#### Summary

An examination has been made of the effectiveness of ethylene carbonate(EC)/2-methyltetrahydrofuran(2-MeTHF) solvents incorporating LiAsF<sub>6</sub> as the solute as electrolytes in secondary lithium batteries. From --10 to 30 °C, the conductivities of EC/2-MeTHF are higher than those of 2-MeTHF and EC/propylene carbonate (PC). For lithium-on-lithium cycling in a half cell, the FOM (figure of merit) of lithium in EC/2-MeTHF has a value 2.2 to 2.7 times higher than that in 2-MeTHF and EC/PC. A coin cell of Li/amorphous  $V_2O_5-P_2O_5$  with EC/2-MeTHF clearly exhibits higher capacity and longer cycle life than cells with 2-MeTHF or EC/PC. It is concluded that EC/2-MeTHF is a promising electrolyte system for secondary lithium battery applications.

## Introduction

Efficient electroplating and stripping of lithium in non-aqueous media, as well as high electrolyte conductivity, are essential to the development of secondary lithium batteries. The most effective electrolyte for improving Li cycling efficiency is 2-methyltetrahydrofuran  $(2-MeTHF)//LiAsF_6$  [1]. However, the conductivity of this electrolyte is low. It has been reported previously [2] that ethylene carbonate(EC)/ether solvent electrolytes are more effective with regard to conductivity and lithium cycling efficiency than other ester/ether solvents, such as propylene carbonate(PC), sulfolane, or  $\gamma$ -lactones plus ethers.

This work examines the efficacy of EC/2-MeTHF solvent electrolytes for use in secondary lithium batteries. It has been shown [2] that EC has a high dielectric constant of 95.3 at 25 °C and that 2-MeTHF has a low viscosity of 0.46 cP at 20 °C. Because the donor number of 2-MeTHF(18.0) is higher than that of EC(16.4), the former solvent has a higher solvation power with Li<sup>+</sup> ions.

0378-7753/87/\$3.50

## Experimental

The solvents were purified until the impurity content was less than 100 ppm. The solute, LiAsF<sub>6</sub> (US Steel Agri Chemicals), was used as received. The amorphous  $V_2O_5-P_2O_5(a-V_2O_5, 95 \text{ mol}\% V_2O_5)$  and the coin cells (23 mm in diameter and 2 mm thickness, cathode active material ~0.1 g) were prepared as reported previously [3]. The cathode mixture was formed by mixing  $a-V_2O_5-P_2O_5$  powder, acetylene black and PTFE powder in the respective weight ratio of 70:25:5. Lithium was electroplated and stripped on a lithium substrate(Li-on-Li cycling) in a half-cell, as described previously [2]. The excess lithium at the start of the experiment, the cycle capacity and the current density were 1.8 C cm<sup>-2</sup>, 0.6 C cm<sup>-2</sup> and 0.5 mA cm<sup>-2</sup>, respectively. The FOM (figure of merit [4]) is a value which reflects the cycling efficiency of lithium and is calculated from the relationship:

FOM = (total accumulated discharge capacity)/(excess Li content) (1)

The ionic association constant  $(K_A)$  for LiAsF<sub>6</sub> was examined [2] by the Bjerrum equation:

$$K_{\rm A} = 4\pi N_{\rm A} \int_{a}^{q} \exp(z^2 e^2 / \epsilon \kappa T r) r^2 \,\mathrm{d}r \tag{2}$$

where a, q and r are the distance of closest approach, the Bjerrum distance, and the distance between the ions, respectively  $N_A$ , z, e, T,  $\epsilon$  and  $\kappa$  have their usual significance [2].

#### **Results and discussion**

The data of Fig. 1 show that the resistivities from -10 to 30 °C for EC/2-MeTHF have lower values than those for 2-MeTHF and EC/PC (PC was added to reduce the melting point of EC). The lower resistivity of EC/2-MeTHF is mainly due to the combined effects of the high dielectric constant of EC and the low viscosity of 2-MeTHF, i.e., there is a significant degree of ionic dissociation and an easy ion migration [2]. At 25 °C, the resistivity exhibited a minimum value when the EC/2-MeTHF mixing volume ratio was 2:3 (Fig. 2). The 2-MeTHF content at minimum resistivity increased with decrease in temperature. This may be due to the influence of viscosity. Table 1 gives Li<sup>+</sup> ionic conductivities ( $\Lambda_0^+$ ) at infinite dilution [2], together with association constants  $(K_A)$  for EC/2-MeTHF and EC/PC, calculated using the Bjerrum equation [2]. The  $K_A$  value is larger in mixtures of EC/2-MeTHF than it is in EC/PC because the dielectric constant of EC/2-MeTHF decreases almostly linearly with an increase in 2-MeTHF content. However,  $\Lambda_0^+$  is higher for EC/2-MeTHF than it is for EC/PC, which is advantageous for lithium battery applications. The reason for the higher value of  $\Lambda_0^+$  in EC/2-MeTHF is as follows: an electrolyte with a large anion, such as  $AsF_6^-$ ,

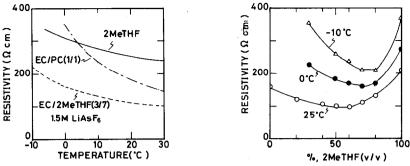



Fig. 1. Relation between resistivity and temperature.

Fig. 2. Resistivity for 1.5 M LiAsF<sub>6</sub>-EC/2-MeTHF.

### TABLE 1

Electrolytic parameters for EC/2-MeTHF//LiAsF<sub>6</sub>

| Solvents        | K <sub>A</sub> | $t_0^+$ | $\Lambda_0^+$ (S cm <sup>2</sup> mol <sup>-1</sup> ) | $D_0({ m cm}^2{ m s}^{-1})	imes 10^6$ |
|-----------------|----------------|---------|------------------------------------------------------|---------------------------------------|
| EC/2-MeTHF(1/1) | 3.93           | 0.39    | 18.1                                                 | 6.15                                  |
| EC/PC(1/1)      | ~ 0            | 0.37    | 11.1                                                 | 2.55                                  |

 $K_A$  for 2-MeTHF is  $4 \times 10^4$ .  $t_0^+$ : transport number for Li<sup>+</sup>.

tends to have a high degree of dissociation because the coulombic force between the  $Li^+$  ion and the anion is low. Therefore, for LiAsF<sub>6</sub>, the ion migration rate (controlled by viscosity) has a stronger effect on conductivity than has the ionic dissociation (controlled by dielectric constant). The diffusion constants  $(D_0)$  of ions in EC/2-MeTHF are higher than are those in EC/PC [5].

The specific discharge capacity for an Li/a-V<sub>2</sub>O<sub>5</sub> cell at 25 °C is shown in Fig. 3. The discharge capacity was calculated with reference to the  $V_2O_5$ - $P_2O_5$  weight. The discharge capacity for the cell with EC/2-MeTHF was greater than that for the cell with 2-MeTHF. The highest capacity was obtained at an EC/2-MeTHF mixing volume ratio of 2:3. This 2-MeTHF content coincides with that for the minimum resistivity.

Table 2 shows FOM values from Li-on-Li cycling tests using either a half-cell or an  $Li/a-V_2O_5$  cell. The FOM values for EC/2-MeTHF were higher than were those for 2-MeTHF and EC/PC. The relation between the discharge (stripping) voltage (E) of lithium (versus  $Li/Li^+$ ) at the stripping end point and the cycle number is given in Fig. 4. The increase in anodic overpotential with increase in cycle number for EC/2-MeTHF is lower than that for 2-MeTHF. The constant E values of  $\sim 3.4$  V beyond the 50th cycle in 2-MeTHF and beyond the 140th cycle in EC/2-MeTHF correspond to the oxidation of 2-MeTHF after the apparent "100%" cycle ends in the Li-on-Li cycling test. The reason for the high lithium cycling efficiency in 2-MeTHF is

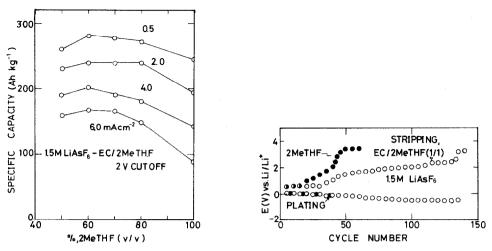



Fig. 3. Specific capacity for an Li/a-V<sub>2</sub>O<sub>5</sub> cell with 1.5 M LiAsF<sub>6</sub>-EC/2-MeTHF at 25 °C.

Fig. 4. Relation between discharge(stripping)-charge(plating) voltages and cycle number by Li-on-Li cycling test using a half-cell at 25 °C.

#### TABLE 2

### FOM of lithium in 1.5 M LiAsF<sub>6</sub>

| Solvent         | FOM                     |                                          |                |  |
|-----------------|-------------------------|------------------------------------------|----------------|--|
|                 | Half cell<br>(Li-on-Li) | Li/a-V <sub>2</sub> O <sub>5</sub> cell* |                |  |
| 2-MeTHF         | 13.2                    | 9.4(270)                                 | - 'some ground |  |
| EC/2-MeTHF(1/1) | 35.7                    | 28.2(400)                                |                |  |
| EC/PC(1/1)      | 16.0                    | 14.8(280)                                |                |  |

\*90 mA h Li; discharge current, 3 mA cm<sup>-2</sup>; charge current, 1 mA cm<sup>-2</sup>; voltage limit, 2 - 3.5 V.

Parentheses indicate cycle number.

attributed to the formation of a porous and/or electron conductive protection film of  $(As-O-As)_n$  on the lithium surface [1] resulting from the reactions of lithium with 2-MeTHF and with  $AsF_6^-$ . It is reported [6] that the thickness of the surface film on lithium is reflected in the anodic overpotential value. In EC/2-MeTHF mixtures, depositing Li<sup>+</sup> ions are selectively solvated with 2-MeTHF molecules because 2-MeTHF has a higher solvation power for Li<sup>+</sup> ions than has EC. Therefore, a 2-MeTHF-rich atmosphere exists around the deposited lithium, even in EC/2-MeTHF mixed systems [3]. One possible reason for EC/2-MeTHF having a higher FOM value than 2-MeTHF is due to the difference between EC/2-MeTHF and 2-MeTHF in the formation rate of the protective film (suppression of 2-MeTHF-deposited lithium interaction), which may be due to EC-2-MeTHF interactions.

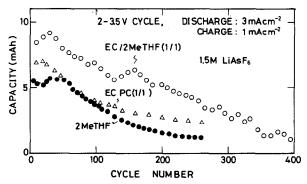



Fig. 5. Relation between capacity and cycle number for an Li/a- $v_2$   $O_5$  cell at 25° C.

The relation between cell capacity and cycle number for an  $\text{Li}/a-\text{V}_2O_5$  cell is presented in Fig. 5. The cell with EC/2-MeTHF exhibits a higher capacity and a longer cycle life than those with 2-MeTHF and EC/PC, respectively.

It is concluded that EC/2-METHF//LiAsF<sub>6</sub> is an excellent electrolyte for achieving high-rate and long cycle-life lithium batteries.

#### References

- 1 J. L. Goldman, R. M. Mank, J. H. Young and V. R. Koch, J. Electrochem. Soc., 127 (1980) 1461.
- 2 S. Tobishima and T. Okada, Electrochim. Acta, 30 (1985) 1715.
- 3 Y. Sakurai and J. Yamaki, J. Electrochem. Soc., 132 (1985) 512.
- 4 K. M. Abraham, J. S. Foos and J. L. Goldman, J. Electrochem. Soc., 131 (1984) 2197.
- 5 J. M. Sullivan, D. C. Hanson and R. Keller, J. Electrochem. Soc., 117 (1970) 779.
- 6 E. Peled, J. Electrochem. Soc., 126 (1979) 2047.